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Probability of dimer reassociation in two dimensions

F. Montalenti* and R. Ferrando
INFM and CFSBT/CNR, Dipartimento di Fisica dell’Universita´ di Genova, Via Dodecaneso 33, 16146 Genova, Italy

~Received 6 October 1999!

We study the problem of dimer dissociation and reassociation in two dimensions through a random-walk-
like calculation. In order to find the probability of dimer reassociation after a given number of hops, we give
the exact analytical solution for the probability of a first return into a given region~rhombus! for a two-
dimensional random walker on a squared lattice.

PACS number~s!: 05.40.Fb, 68.35.Fx
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The role of dissociation-reassociation processes in di
surface diffusion has recently attracted interest. Indeed it
been shown that for Si2 /Si(110) @1–3#, and for many metal
dimers @4,5# diffusing on fcc~110! surfaces, this piecewis
diffusion mechanism can be dominant, thus giving the m
contribution to dimers mobility. In piecewise diffusion, th
dimer dissociates in a positionA and the two adatoms diffus
over the surface until they meet again in a new positionB. In
many systems dimer mobility is much slower than adat
mobility. Therefore, in a typical experiment, it is very likel
to observe only associated dimers. Thus, the dimer will
observed first inA and subsequently inB, and dissociation
reassociation acts as an effective dimer diffusion mechan
In all the above mentioned references the investigated
face geometry presents a well-defined preferential direc
for diffusion, and dimers essentially move in one dimensi
The present authors reported a complete analytical treatm
of the one-dimensional piecewise diffusion in Ref.@5#. Here
we consider dissociation reassociation in two dimensio
and we give an exact analytical result for the probability
reassociation after a given number of hops. It may be wo
emphasizing that the study of the two-dimensional probl
is interesting since there are many real systems where dim
effectively move in two dimensions: fcc~111! and ~100!
surfaces, are among the possible examples. As discu
with more details in Sec. V, real dimer dynamics on su
surfaces is somewhat more complex than the one descr
by the model here below reported. Nevertheless, the e
analytical solution that we find can be used as a refere
result to be compared with experiments and simulatio
More, the random-walk problem we solve could be imp
tant for other applications. The paper is organized as follo
in Sec. I we briefly recall some results for dimer reassoc
tion in 1D. In Sec. II we analyze the relation between dim
reassociation and first return to the origin in 2D. An exa
recursion formula for the reassociation probability in a giv
number of steps is found in Sec. III. In Sec. IV we inves
gate the asymptotic behavior of such probability, and
give an explicit formula for its generating function. The la
section contains a final discussion of the results.

*Author to whom correspondence should be addressed. Electr
address: montalenti@fisica.unige.it
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I. REASSOCIATION AND FIRST RETURN
TO THE ORIGIN IN ONE DIMENSION

In the following we shall consider a dimer which dissoc
ates at step 1, i.e., one of the two atoms makes a one
move. Any further step will be characterized by a hop of o
of the two atoms. If at a given step the two atoms meet e
other again~i.e., if they become first neighbors!, we consider
this situation stable: the two adatoms remain fixed in su
position. We ask which is the probabilityQdim(m) for the
dimer to reassociate again exactly afterm steps. In one di-
mension, the probabilityQdim

1D (m) is easily found, since the
relative coordinatexr5x22x121 (x1 and x2 are the two
atoms coordinates,x2.x1) of the dimer performs a simple
unbiased one-dimensional random walk; the probability
dimer reassociation afterm steps is nothing but the probabi
ity Q0

1D(m) of a first return to the origin forxr . As it is well
known ~for example, see Refs.@6,7#!, such probability reads

Q0
1D~2m!5Qdim

1D ~2m!5S 2m

m D S 1

4D m 1

~2m21!
. ~1!

II. REASSOCIATION AND FIRST RETURN TO THE STAR
IN TWO DIMENSIONS

Let us now consider a two-dimensional square latti
While in 1D reassociation simply happens whenxr50, on a
square lattice there are four configurations where the dime
bound. They are shown in Fig. 1.

This causes a noticeable complication by respect to
1D case, sinceQdim

2D (m) cannot be obtained directly by com
puting the probabilityQ0

2D(m) for the first return to the ori-
gin in m steps of a simple two-dimensional random walk
(xW r). Nevertheless,Q0

2D(m) will be useful, so that we briefly
outline how to evaluate it. For a two-dimensional simp
random walker starting from the origin, the probabili
T0

2D(2m) to be at the origin~not necessarily for the firs
time! after 2m steps~only at even steps the walker can rea
the origin! is given by@7#

T0
2D~2m!5

~2m! !2

42m~m! !4
. ~2!

In our opinion, the easiest way to findQ0
2D(2m) once

T0
2D(2m) is known, is to introduce thegenerating functions

ic
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T̂0
2D~j!5 (

m50

`

T0
2D~2m!j2m,

Q̂0
2D~j!5 (

m50

`

Q0
2D~2m!j2m. ~3!

Indeed, it can be easily shown~for example, see Ref.@6#!
that the two generating functions satisfy the simple relati

Q̂0
2D~j!512

1

T̂0
2D~j!

. ~4!

So,Q0
2D(0)5121/T0

2D(0), while for m.0 the recursion re-
lation

Q0
2D~2m!52 (

i 50

m21

T0
2D~2m22i !Q0

2D~2i !, ~5!

together with Eq.~2! gives Q0
2D(2m). While numerically

computing Q0
2D(2m) for large m’s, in order to avoid to

handle with large factorials, it may be useful the recurs
relation

T0
2D~2m12!5T0

2D~2m!
@~2m12!~2m11!#2

16~m11!4
. ~6!

Indeed, by using Eqs.~5!,~6! together, the probabilities
Q2D(2m) up tom;105 are quickly obtained. The two prob
abilities display the asymptotic behaviors@7,8#

Q0
1D~2m!;~2m!23/2

Q0
2D~2m!;

1

2m ln2~2m!
. ~7!

Now we can go back to our original problem: the tw
dimensional dimer diffusion. Once again, we want to g
information about the dimer by considering the tw
dimensional walker represented by the relative coordin

FIG. 1. The dimer is associated in each of the four configu
tions displayed in the figure. One adatom is represented by a b
full circle, the other by a striped circle.
n

t

te

xW r5(x22x1 ,y22y1). Dimer and induced-xW r random walks
are schematically represented in Fig. 2. The dimer is initia
bound, so thatxW r occupies one of the four points of thestar
S ~rhombus! displayed in Fig. 1. In the following we sha
remember that whenxW rPS, the dimer is associated. At th
subsequent step, we impose its dissociation, i.e., there ar
possible configurations, since the two adatoms are not
lowed to occupy the same position: this means thatxW r must
move outside the star. After this step,xW r moves as a simple
unbiased 2D-random walker. We want to findQS

2D(m), i.e.,
the probability it has,starting from S, to reach againone of
the four star pointsfor the first time in a given number o
stepsm, knowing the probability,starting from the originto
reach again theorigin for the first time inm steps@Q0

2D(m)#.

Obviously, Qdim
2D (m)[QS

2D(m). We note that ifxW r reaches
the origin for the first time at themth step, it was inSat step
m21: this may suggest to look for a relation betwe
Q0

2D(2m12) andQS
2D(2m) @the number of steps is alway

even, and two extra steps are needed to the random walkxW r
by respect to the dimer: the first, is required to move fro

-
ck

FIG. 2. Left: dimer random walk, showing a dissociatio
reassociation event in two steps. Right: corresponding random w

for the relative coordinatexW r . In order to extract the probability for
the first return toS ~starting fromS) from the probability for the
first return to the origin~starting from 0!, a four-step random walk
must be considered.
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PRE 61 3413PROBABILITY OF DIMER REASSOCIATION IN TWO . . .
the origin to S, and the last is required to go back to th
origin after the walker is inS at the (2m11)th step#. We
notice that, once the unbiased two-dimensional walker is
S, it can move again out of the star. Therefore if it reach
the origin at themth step for the first time, we know it was i
S at the (m21)th step, but not necessarily for the first tim

III. SOLUTION OF THE TWO-DIMENSIONAL PROBLEM

Let us introduceU 2m12
0 , the set of all distinct random

walks leading to a first return to the origin for the first tim
after 2m12 steps. Now we introduceU (2m12);(2m11)

S , i.e.,
the set of distinct random walks leading to a first return
the origin in 2m12 steps where the walker is inS for the
first time ~after the first step! at step 2m11. By definition,

U (2m12);(2m11)
S ,U 2m12

0 .

The key observation is that

U 2m12
0 5øk50

m21U (2m12);(2m1122k)
S . ~8!

So, we are making a partition of the set of all possible r
dom walks leading to a first return to the origin in 2m12
steps, by creating subsets of such random walks whose
ments are characterized by a first return toS at a given step.
Of course, such subsets are disjoints, and we can calc
Q0

2D(2m12) as

Q0
2D~2m12!5 (

k50

m21

Q̃0
2D@U (2m12);(2m1122k)

S #, ~9!

whereQ̃0
2D@U (2m12);(2m1122k)

S # is the contribution given to
Q0

2D(2m12) only from the random walks o
U (2m12;2m1122k)

S .
Let us now considerm51, where things are particularl

simple, since all random walkers coming back to the ori
for the first time at step 4 were back inS for the first time at
step 3. Thus,

U 4;3
S [U 4

0 . ~10!

This means that there is a one by one correspondence
tween random walks of four steps leading to a first return
the origin and the two-step random walk ofxW r which starts
from S and reaches backS in exactly two steps, moving ou
of S at the first step~see Fig. 2!. Nevertheless, while com
puting the probabilities of such random walks, one sho
take into account that in the four-step random walk, the s
ond step, i.e., the move fromS outsideS has a probability
3/4, while in thexW r two-step random walk this moves
imposed, i.e., has unit probability. More, the last move fro
S to the origin in the four-step random walk occurs wi
probability 1/4. So,

Q0
2D~4!5

3

4

1

4
QS

2D~2!. ~11!

Before giving the general formula forQS
2D(2m), it may be

instructive to analyze the casem52 too. Now we must con-
sider that
in
s

-

le-

te

n

e-
o

d
c-

U 6
05U 6;5

S øU 6;3
S , ~12!

and from Eq.~9! follows

Q0
2D~6!5Q̃0

2D@U 6;5
S #1Q̃0

2D@U 6;3
S #. ~13!

The first addendum can be evaluated as in them51 case,
and it gives a contribution toQ0

2D(6):

Q̃0
2D@U 6;5

S #5
3

16
QS

2D~4!. ~14!

For the second addendum a small additional effort is need
All random walksPU 6;3

S are first back toS at step 3, then
are back inS after two further steps, and finally reach th
origin. By separating such intermediate two steps return tS
from the other four steps, we find

Q̃0
2D@U 6;3

S #5
3

4
QS

2D~2!Q0
2D~4!, ~15!

and

Q0
2D~6!5

3

4

1

4
QS

2D~4!1
3

4
QS

2D~2!Q0
2D~4!. ~16!

Note that, as in them51 case, a factor 3/4 must be consi
ered for each move where the walker moves fromS outside
S, while the factor 1/4 weights the last step fromS to the
origin. We can now summarize the procedure and give
final result. For a given number of steps 2m12, one can
group the set of random walks leading to a first return to
origin at the final step, into the disjoint subsets where
first return to the star happens at a given step 2m1122k
(k50,1,2, . . . ,m21). The total probabilityQ0

2D(2m12)
can be written as the sum over such subsets. The one c
sponding to k50 simply gives a contribution
(3/16)QS

2D(2m); for k51 one finds (3/4)QS
2D(2m

22)Q0
2D(4); for k52 we have (3/4)QS

2D(2m24)Q0
2D(6),

and so on. The final result forQS
2D(2m)(m>2), reads

QS
2D~2m!5

16

3
Q0

2D~2m12!

24 (
k51

m21

Q0
2D~2m1222k!QS

2D~2k! ~17!

which can be easily solved iteratively.
In order to check thatQS

2D(2m) given by Eq.~17! is right,
we run a set of Monte Carlo simulations. In such simu
tions, we considered a dimer associated at step 0; at each
one of the two adatoms was left free to increase or to
crease one of the two coordinates. Of course at the first s
the two adatoms were not allowed to have the same coo
nates. Simulations were stopped at the reassociation
After 107 simulations, we found the results reported in F
3, in perfect agreement with Eq.~17!.
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IV. EXPLICIT SOLUTION FOR THE GENERATING
FUNCTION AND ASYMPTOTIC BEHAVIOR

Multiplying both sides of Eq.~17! by j2m and summing
over m.1, we obtain

(
m52

`

QS
2D~2m!j2m5

16

3 (
m52

`

Q0
2D~2m12!j2m24

3 (
m52

`

j2m (
k51

m21

Q0
2D

3~2m1222k!QS
2D~2k!. ~18!

By introducing the generating functions

Q̂S
2D~j!5 (

m50

`

QS
2D~2m!j2m,

Q̂0
2D~j!5 (

m50

`

Q0
2D~2m!j2m, ~19!

after some calculations Eq.~18! gives

Q̂S
2D~j!2QS

2D~2!j25
16

3j2
@Q̂0

2D~j!2j2Q0
2D~2!2j4Q0

2D~4!#

2
4

j2
Q̂0

2D~j!Q̂S
2D~j!

14Q0
2D~2!Q̂S

2D~j!. ~20!

By recalling that Q0
2D(2)51/4, and that QS

2D(2)
5(16/3)Q0

2D(4), from Eq. ~20! one easily obtains

Q̂S
2D~j!5

4

3
2

j2

3Q̂0
2D~j!

, ~21!

FIG. 3. Comparison between Monte Carlo simulations~circles!
and the exact result forQS

2D(2m) ~squares!: the perfect agreemen
confirms that our procedure in finding Eq.~17! was correct.
which gives the explicit solution for the generating functio
of dimer reassociation probability. Equation~21! may be also
put in the form

Q̂S
2D~j!5

4

3
2

2j2K@j2#

6K@j2#23p
, ~22!

where

K@m#5E
0

p/2 1

A12m sin2a
da, ~23!

is the complete elliptic integral. Equation~22! follows from
Eqs.~21!,~4! and from@9#

T̂0
2D~j!5

2

p
K@j2#. ~24!

Once the generating function is known, one can try to in
the asymptotic behavior of the associated power series c
ficients by using the discrete Tauberian theorem@6#. Indeed,
if

f̂ ~j!5 (
n50

`

f njn, ~25!

the conditions

f̂ ~j!;~12j!2pLS 1

12j D if j→12 ~26!

and

f n;np21L~n! if n→`, ~27!

are equivalent provided thatf n is monotonic,p.0, and
limx→`@L(lx)/L(x)#→1 ;l. Of course, such theorem can
not be applied to the generating function of a normaliz
probability, since limj→12 f̂ (j)51. A possible trick is to
consider the associated power series having partial sum
coefficients, in our caseQ̂S

sum(j) defined by

Q̂S
sum~j!5 (

m50

`

j2mS (
m5k

`

QS
2D~2k!D . ~28!

Rearranging the terms in the double sum, after few calcu
tions one obtains

Q̂S
sum~j!5

1

12j2
@12j2Q̂S

2D~j!#. ~29!

Now, since@9#

K@j2#;
1

2
ln

16

~12j2!
if j→12, ~30!

then

Q̂S
sum~j!;2

1

12j

1

ln~12j!
if j→12. ~31!
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FIG. 4. Left: double logarithmic plot for
QS

2D(2m) ~full line! andQ0
2D(2m) ~dashed line!.

Right: for 2m→`,QS
2D(2m);1/@2m ln2(2m)#.
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We thus can apply the Tauberian theorem, finding

(
k5m

`

QS
2D~2k!;

1

ln 2m
if m→`, ~32!

and finally

QS
2D~2m!;

1

2m ln2~2m!
, m→`. ~33!

So, QS
2D(2m) and Q0

2D(2m) follow the same asymptotic
behavior. In Fig. 4 we compareQS

2D(2m) andQ0
2D(2m) for

small values ofm, and we showQS
2D(2m) multiplied by its

asymptotic limit (2m)ln2(2m). For very smallm, QS
2D(2m)

.Q0
2D(2m), since as soon as the walker is closed to its or

nal position, the probability of falling into a finite regio
around the origin is of course larger than the probability
reaching the origin. We can think that in order to avoidS in
the first steps, the walker necessarily moves, on average
away from its initial position. That is why the probability t
reachS in 2m steps for large values ofm is smaller than
Q0

2D(2m). The same asymptotic behavior can be justified
thinking that for very largem’s, the walker goes so far from
the origin that the wholeS is seen as a single point.

V. DISCUSSION AND CONCLUSIONS

In the previous sections, we proposed a simple model
dimer dissociation-reassociation in two dimensions. In or
to solve the model analytically, rather strong assumpti
have been made, so that the description of real systems
appear oversimplified. Our aim was to give a referen
model, whose solution can be easily computed and c
pared, e.g., with Monte Carlo simulations where the r
dimer dynamics can be considered. Let us briefly review
basic hypothesis required for our model to hold. First of
we neglected the atom-atom interaction out of first-neigh
sites. This assumption may be questionable on close-pa
surfaces, where the calculation of the atom-steps interact
@10# and of the pair atom-atom interaction@11–13# showed
that longer range interactions can play an important ro
Nevertheless, the situation may be different on open s
i-

f

far

y

r
r
s
ay
e
-
l
e
,
r
ed
ns

.
r-

faces. Very recently, indeed, Bogicevicet al. @14# showed
that metal dimers diffusing on the open fcc~100! surface are
effectively dissociated beyond second-neighbor distan
Note that such surfaces are characterized by a square g
etry, exactly as the lattice considered in our model. Nev
theless, also the real metal-dimer dynamics on the fcc~100!
surfaces is more complex than the one described by
model. Indeed, we did not take into account the complex
of the configuration where the two atoms are placed alo
the diagonal of the square cell, separated by a distance oA2
~assuming that first neigbors are at distance 1!. At least for
Al2 , Rh2 , and Au2 @14#, and Cu2 @15# it was shown that
from this configuration, the two atoms tend to switch back
the associated configuration~where they are separated b
distance 1!. Thus, the hypothesis of unbiased random w
does not hold in this configuration. More, also the possibi
of dimer dissociation via this metastable diagonal configu
tion should be taken into account@14#. Therefore, a better
description of real dimer dynamics in the above syste
would imply the study of more complicated models, who
solution could be achieved by Monte Carlo simulations.

In this paper we have calculated the probabilityQdim
2D (2m)

for dimer reassociation in two dimensions on a square latt
While in one dimension this probability coincides with th
probability for a first return to the origin of the relative co
ordinate of the two dimer atoms, in two dimensions the
association problem is mapped to the first return to a fin
region enclosing the origin. By making a suitable subdivisi
of the random walks into a set of disjoint subwalks, it is s
possible to extractQdim

2D (2m) from the probability of a first
return to the origin in@Q0

2D(2m)# in two dimensions, even if
this requires an iterative procedure. An explicit formula c
be given by the generating function ofQdim

2D (2m). From the
generating function, one can obtain the asymptotic beha
„;1/@2m ln2(2m)#… of Qdim

2D (2m) which turns out to be the
same ofQ0

2D(2m).
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