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Probability of dimer reassociation in two dimensions

F. Montalentf and R. Ferrando
INFM and CFSBT/CNR, Dipartimento di Fisica dell'Universita Genova, Via Dodecaneso 33, 16146 Genova, ltaly
(Received 6 October 1999

We study the problem of dimer dissociation and reassociation in two dimensions through a random-walk-
like calculation. In order to find the probability of dimer reassociation after a given number of hops, we give
the exact analytical solution for the probability of a first return into a given re@gibambug for a two-
dimensional random walker on a squared lattice.

PACS numbd(s): 05.40.Fb, 68.35.Fx

The role of dissociation-reassociation processes in dimer I. REASSOCIATION AND FIRST RETURN
surface diffusion has recently attracted interest. Indeed it has TO THE ORIGIN IN ONE DIMENSION

b_een shown t_hat for $I5i(110) [1-3), and for many met_al In the following we shall consider a dimer which dissoci-
d!mer_s[4,5] d|ffus_|ng on fcc(110 _surfaces, thl_s_pleceW|se_ ates at step 1, i.e., one of the two atoms makes a one-site
diffusion mechanism can be dominant, thus giving the mainyqye Any further step will be characterized by a hop of one
contribution to dimers mobility. In piecewise diffusion, the o the two atoms. If at a given step the two atoms meet each
over the surface until they meet again in a new posiBom  thjs sjtuation stable: the two adatoms remain fixed in such

many systems dimer mobility is much slower than adatomposition. We ask which is the probabili®g,(m) for the
mobility. Therefore, in a typical experiment, it is very likely dimer to reassociate again exactly aftersteps. In one di-

to observe only associated dimers. Thus, the dimer will benension, the probabilit®iP (m) is easily found, since the
observed first inA and subsequently iB, and dissociation relative coordinatex,=x,—x;—1 (x; and x, are the two
reassociation acts as an effective dimer diffusion mechanisnatoms coordinatess,>x;) of the dimer performs a simple

In all the above mentioned references the investigated sutinbiased one-dimensional random walk; the probability of
face geometry presents a well-defined preferential directionimer reassociation aften steps is nothing but the probabil-
for diffusion, and dimers essentially move in one dimensionity Qa°(m) of a first return to the origin fox, . As it is well

The present authors reported a complete analytical treatmekhown (for example, see Ref§6,7]), such probability reads

of the one-dimensional piecewise diffusion in Rgf]. Here

we consider dissociation reassociation in two dimensions, D 1D 2m\/(1\m 1

and we give an exact analytical result for the probability of 0 (2m)=Qgim(2m) = m/l4] 2m-1) @)
reassociation after a given number of hops. It may be worth
emphasizing that the study of the two-dimensional problem

o . . - |l. REASSOCIATION AND FIRST RETURN TO THE STAR
is interesting since there are many real systems where dimers IN TWO DIMENSIONS
effectively move in two dimensions: fc€l11) and (100

surfaces, are among the possible examples. As discussedLet us now consider a two-dimensional square lattice.
with more details in Sec. V, real dimer dynamics on suchWhile in 1D reassociation simply happens wher 0, on a
surfaces is somewhat more complex than the one describegjuare lattice there are four configurations where the dimer is
by the model here below reported. Nevertheless, the exadtound. They are shown in Fig. 1.
analytical solution that we find can be used as a reference This causes a noticeable complication by respect to the
result to be compared with experiments and simulationslD case, sinc®3,(m) cannot be obtained directly by com-
More, the random-walk problem we solve could be impor-puting the probabilit)Q(z,D(m) for the first return to the ori-
tant for other applications. The paper is organized as followsgin in m steps of a simple two-dimensional random walker
in Sec. | we briefly recall some results for dimer reassocia{x,). NeverthelessQ3°(m) will be useful, so that we briefly
tion in 1D. In Sec. Il we analyze the relation between dimeroutline how to evaluate it. For a two-dimensional simple
reassociation and first return to the origin in 2D. An exactrandom walker starting from the origin, the probability
recursion formula for the reassociation probability in a givenT3°(2m) to be at the origin(not necessarily for the first
number of steps is found in Sec. lll. In Sec. IV we investi- time) after 2m steps(only at even steps the walker can reach
gate the asymptotic behavior of such probability, and wethe origin is given by[7]
give an explicit formula for its generating function. The last
section contains a final discussion of the results.

 (2m1)?
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* Author to whom correspondence should be addressed. Electronic In our opinion, the easiest way to fir@?)D(Zm) once
address: montalenti@fisica.unige.it TSD(Zm) is known, is to introduce thgenerating functions
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FIG. 1. The dimer is associated in each of the four configura-QO O & OO O O0O0YSO0O
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full circle, the other by a striped circle.
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Indeed, it can be easily showifor example, see Ref6]) O00N00
that the two generating functions satisfy the simple relation QQ@@gQ Step 4
L 000V 0OO
AgD(g):l_ 5 . (4) OOOOOO
To (8)

FIG. 2. Left: dimer random walk, showing a dissociation-
So QZD(O)= 1— 1/-|—2D(O) while for m>0 the recursion re- reassociation event in two steps. Right: corresponding random walk
' <0 0 ’ for the relative coordinaté, . In order to extract the probability for

lation
the first return toS (starting fromS) from the probability for the
m-1 first return to the origin(starting from 0, a four-step random walk
Dom)=— > TP(2m-2i)Q3"(2i), (5)  must be considered.

=0

together with Eq.(2) gives QSD(Zm). While numerically X, = (X>—Xq,Y>—Y,). Dimer and induced; random walks
computing Q3°(2m) for large m’s, in order to avoid to are schematically represented in Fig. 2. The dimer is initially
handle with large factorials, it may be useful the recursiorbound, so thak, occupies one of the four points of tiséar

relation S (rhombus displayed in Fig. 1. In the following we shall
oM+ 2)(2m+ 1)12 remember that wher, € S, the dimer is associated. At the
TgD(2m+2)=T§D(2m) [(2Zm+2)(2m+1)] () subsequent step, we impose its dissociation, i.e., there are six
16(m+1)* possible configurations, since the two adatoms are not al-

lowed to occupy the same position: this means fhahust

move outside the star. After this steﬁ, moves as a simple
unbiased 2D-random walker. We want to fieg°(m), i.e.,
the probability it hasstarting from S to reach agaimne of
éD(zm)N(Zm)—WZ the four star pointdor the first time in a given number of
stepsm, knowing the probabilitystarting from the originto
reach again therigin for the first time inm stepg Q3°(m)].

(7)  Obviously, Q22 (m)=Q%°(m). We note that ifx, reaches

dim
the origin for the first time at thenth step, it was irSat step
Now we can go back to our original problem: the two- M - 1: this may suggest to look for a relation between
dimensional dimer diffusion. Once again, we want to getQo (2m+2) andQs’(2m) [the number of steps is always
information about the dimer by considering the two-even, and two extra steps are needed to the random walker
dimensional walker represented by the relative coordinatéy respect to the dimer: the first, is required to move from

Indeed, by using Eqg&%),(6) together, the probabilities
Q?P(2m) up tom~ 10° are quickly obtained. The two prob-
abilities display the asymptotic behavidria 8]

2D
2m)~ —————.
o (2m) 2mIn?(2m)
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the origin to S and the last is required to go back to the US=UZ VUG 5, (12
origin after the walker is irS at the (2n+1)th steg. We ’ ’

notice that, once the unbiased two-dimensional walker is iry 4 trom Eq.(9) follows

S it can move again out of the star. Therefore if it reaches

the origin at themth step for the first time, we know it was in - % oDr s /S = oDr s /S

Sat the (n—1)th step, but not necessarily for the first time. o (6)=Qq [Ug;s]+ Qo [Us3]- (13

11l. SOLUTION OF THE TWO-DIMENSIONAL PROBLEM The first addendum can be evaluated as inrhel case,
and it gives a contribution t@2°(6):
Let us introducel/3,,. ,, the set of all distinct random
walks leading to a first return to the origin for the first time _ 3
after 2n+2 steps. Now we introduck 3y 2. 2m+ 1) 1-€- PluUs.sl= 16 2P(4). (14)
the set of distinct random walks leading to a first return to
the origin in 2n+2 steps where the walker is @& for the

first time (after the first stepat step 2n+1. By definition, For the second addendum a small additional effort is needed:

All random walk5eug;3 are first back tdS at step 3, then
are back inS after two further steps, and finally reach the
origin. By separating such intermediate two steps retur® to
The key observation is that from the other four steps, we find

s 0
Uomi2):c2m+1)CU2my 2 -

0 _, m-1,s
Uzms 2= UZ0U (am+ 2):(2m+ 1 2k) - (8

QNS 51 QP2 (15
So, we are making a partition of the set of all possible ran- 0763 4%S 0

dom walks leading to a first return to the origin im2-2
steps, by creating subsets of such random walks whose eland
ments are characterized by a first returrStat a given step.

Of course, such subsets are disjoints, and we can calculate . 31 3 o .
2D(2m+2) as 0 (6)=77Qs(H+7Q57(2)Q7(4). (16)
m—1
P2m+2)= > Q[UPmi2y:emi1-200), (9  Note that, as in then=1 case, a factor 3/4 must be consid-
k=0 ered for each move where the walker moves frSmoutside

- S while the factor 1/4 weights the last step frddto the
where Q5 U G- 2):(am+1-21)] 1S the contribution given to  origin. We can now summarize the procedure and give the
2(2m+2) only from the random walks of final result. For a given number of stepsn2 2, one can
u(52m+2;2m+1_2k) . group the set of random walks leading to a first return to the
Let us now considem=1, where things are particularly origin at the final step, into the disjoint subsets where the
simple, since all random walkers coming back to the originfirst return to the star happens at a given step+2l — 2k
for the first time at step 4 were back 8for the first time at (k=0,1,2 ... ,m—1). The total probabilityQSD(Zer 2)

step 3. Thus, can be written as the sum over such subsets. The one corre-
0 sponding to k=0 simply gives a contribution
Uz.z=Uj. (10 (3/16)Q2(2m); for k=1 one finds (3/4R%°(2m

520/ 4) - _ 2D(n - A\(y2D
This means that there is a one by one correspondence bghzd)gg (Ei),'l':]()er fli(nalzreviilth%ewg/:]?(?n(jg]) 2%03(6)’
tween random walks of four steps leading to a first return to ' S —eh

the origin and the two-step random walk )Z}f which starts 16

from Sand reaches bacRin exactly two steps, moving out 2(2m)= = Q%°(2m+2)

of Sat the first stedsee Fig. 2 Nevertheless, while com- 3

puting the probabilities of such random walks, one should m—1

take into account that in the four-step random walk, the sec- —4 2 QgD(2m+2_2k)Q§D(2k) 17)

ond step, i.e., the move fror@ outsideS has a probability k=1

3/4, while in theX, two-step random walk this moves is

imposed, i.e., has unit probability. More, the last move fromwhich can be easily solved iteratively.

S to the origin in the four-step random walk occurs with  In order to check tha®2(2m) given by Eq.(17) is right,
probability 1/4. So, we run a set of Monte Carlo simulations. In such simula-
tions, we considered a dimer associated at step 0; at each step
one of the two adatoms was left free to increase or to de-
crease one of the two coordinates. Of course at the first step,
the two adatoms were not allowed to have the same coordi-
Before giving the general formula fdpéD(Zm), it may be nates. Simulations were stopped at the reassociation step.
instructive to analyze the case=2 too. Now we must con- After 10’ simulations, we found the results reported in Fig.
sider that 3, in perfect agreement with E¢L7).

31
5(4)=77Q8°(2). (1)
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FIG. 3. Comparison between Monte Carlo simulati¢ciscles

and the exact result fcﬂ?éD(Zm) (squares the perfect agreement

confirms that our procedure in finding EQ.7) was correct.

IV. EXPLICIT SOLUTION FOR THE GENERATING
FUNCTION AND ASYMPTOTIC BEHAVIOR

Multiplying both sides of Eq(17) by &2™ and summing

overm>1, we obtain

o

16
2, QEP(2m)em==

22 Q2P(2m+2)£2m—4

o0 m—1
x> #mY QP
m=2 k=1
X (2m+2-2k)Q%(2k). (18

By introducing the generating functions

Q¥(¢)= 2 QZP(2m) &2,

QSE’@:mEZO Q2P(2m)&2m, (19)

after some calculations E¢L8) gives

Q&) - Q)%= ¢ gz 201086 - 2Q(2) - £#Q2R(4)]

ngSD@)QéD(f)
+4Q5°(2)Q%°(¢). (20

By recalling that Q3°(2)=1/4, and that QZ%°(2)
=(16/3)Q3°(4), from Eq. (20) one easily obtains

2D 4 &
)= o (21)
(973 302’
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which gives the explicit solution for the generating function
of dimer reassociation probability. Equati(®il) may be also
put in the form

. 4 28%K[ &
Qo =5~ ﬁ (22)
where
/2 1
K[m]= fo dl—msi?ada @3

is the complete elliptic integral. Equatid@22) follows from
Egs.(21),(4) and from[9]

A 2

T8(6) = —K[&7]. (24
Once the generating function is known, one can try to infer
the asymptotic behavior of the associated power series coef-

ficients by using the discrete Tauberian theof&in Indeed,
if

f(§)=n§0 fné", (25
the conditions
f(§>~<1—§)‘PL(%§) if é-1" (26)
and
fo~nP IL(n) if n—oo, (27

are equivalent provided that, is monotonic,p>0, and
lim,_.[L(AX)/L(X)]—1 V¥\. Of course, such theorem can-
not be applied to the generating function of a normalized

probability, since Iing_,lff(g)zl. A possible trick is to
consider the associated power series having partial sums for

coefficients, in our cas@ ‘M &) defined by
Q"= 2, 52"“( 2 Qéf’(zk)) : (28

Rearranging the terms in the double sum, after few calcula-
tions one obtains

Qs = [1-£Q&(9)]. (29

152

Now, since[9]

K[gz]N%m(llG if &1, (30)

)
then

QM &)~ if ¢—1-. (31)

1 1
1-¢In(1-¢)
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We thus can apply the Tauberian theorem, finding faces. Very recently, indeed, Bogicewit al. [14] showed
. that metal dimers diffusing on the open 0 surface are
2D _ effectively dissociated beyond second-neighbor distances.
kgm Qs7(2k)~ In2m if m—ce, (32 Note that such surfaces are characterized by a square geom-
etry, exactly as the lattice considered in our model. Never-
and finally theless, also the real metal-dimer dynamics on thg266)

surfaces is more complex than the one described by our
. model. Indeed, we did not take into account the complexity
s (2m)~ ————, m—®. (33 of the configuration where the two atoms are placed along
2mIn“(2m) the diagonal of the square cell, separated by a distang@ of
(assuming that first neigbors are at distangeAt least for
Al,, Rh,, and Ay [14], and Cy [15] it was shown that
D - . from this configuration, the two atoms tend to switch back to
small Va'%‘es_ o_fn, and \Q'e showQs"(2m) mult|pI|e9Dby its the associated configuratiomvhere they are separated by
asymptotic limit (2m)In*(2m). For very smallm, Qs(2m)  istance 1 Thus, the hypothesis of unbiased random walk
>Qg"(2m), since as soon as the walker is closed to its origi-goes not hold in this configuration. More, also the possibility
nal position, the probability of falling into a finite region of dimer dissociation via this metastable diagonal configura-
around the origin is of course larger than the probability oftion should be taken into accouft4]. Therefore, a better
reaching the origin. We can think that in order to avBith  description of real dimer dynamics in the above systems
the first steps, the walker necessarily moves, on average, f@fould imply the study of more complicated models, whose
away from its initial position. That is why the probability to spjution could be achieved by Monte Carlo simulations.
reachS in 2m steps for large values ah is smaller than In this paper we have calculated the probab@ﬁP(Zm)
2D i i L 1atifi . o . : im :
o (2m). The same asymptotic behavior can be justified byfor dimer reassociation in two dimensions on a square lattice.
thinking that for very largen'’s, the walker goes so far from while in one dimension this probability coincides with the

So, Q%°(2m) and Q3°(2m) follow the same asymptotic
behavior. In Fig. 4 we compa®3’(2m) and Q3°(2m) for

the origin that the whol&is seen as a single point. probability for a first return to the origin of the relative co-
ordinate of the two dimer atoms, in two dimensions the re-
V. DISCUSSION AND CONCLUSIONS association problem is mapped to the first return to a finite

region enclosing the origin. By making a suitable subdivision
bf the random walks into a set of disjoint subwalks, it is still

2D

dimer dissociation-reassociation in two dimensions. In orde ossible to extracQZ2(2m) from the probability of a first

to solve the model analytically, rather strong assumption s . . ) )
have been made, so thatythe dyescription of re%l systerﬁs m _turn to _the orgm n[_QSD(Zm)] In two dlmenslpns, even if
appear oversimplified. Our aim was to give a referencd S requires an |terat|ve. procedqre. AnDepr|C|t formula can
model, whose solution can be easily computed and comP€ 9iven by the generating function Qfi(2m). From the
pared, e.g., with Monte Carlo simulations where the reageneratlnngunctmn, onzeDcan obtal_n the asymptotic behavior
dimer dynamics can be considered. Let us briefly review thd~1[2mIn“(2m)]) of Qg(2m) which turns out to be the
basic hypothesis required for our model to hold. First of all,same ofQ3>(2m).

we neglected the atom-atom interaction out of first-neighbor

sites. This assumption may _be guestionable on cl_ose-pa<_:ked ACKNOWLEDGMENTS
surfaces, where the calculation of the atom-steps interactions
[10] and of the pair atom-atom interactiphl—13 showed We acknowledge financial support from the Italian Min-

that longer range interactions can play an important roleistero della Universita@ Ricerca under the projeBtalle su-
Nevertheless, the situation may be different on open surperfici ideali a quelle reali
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